Oddness/evenness-based classifiers for Boolean or numerical data
نویسندگان
چکیده
منابع مشابه
Naive possibilistic classifiers for imprecise or uncertain numerical data
In real-world problems, input data may be pervaded with uncertainty. In this paper, we investigate the behavior of naive possibilistic classifiers, as a counterpart to naive Bayesian ones, for dealing with classification tasks in presence of uncertainty. For this purpose, we extend possibilistic classifiers, which have been recently adapted to numerical data, in order to cope with uncertainty i...
متن کاملPossibilistic classifiers for numerical data
Naive Bayesian Classifiers, which rely on independence hypotheses, together with a normality assumption to estimate densities for numerical data, are known for their simplicity and their effectiveness. However, estimating densities, even under the normality assumption, may be problematic in case of poor data. In such a situation, possibility distributions may provide a more faithful representat...
متن کاملIncremental Boolean Combination of Classifiers
The incremental Boolean combination (incrBC ) technique is a new learn-and-combine approach that is proposed to adapt ensemblebased pattern classification systems over time, in response to new data acquired during operations. When a new block of training data becomes available, this technique generates a diversified pool of base classifiers from the data by varying training hyperparameters and ...
متن کاملTensor-Based Classifiers for Hyperspectral Data Analysis
In this work, we present tensor-based linear and nonlinear models for hyperspectral data classification and analysis. By exploiting principles of tensor algebra, we introduce new classification architectures, the weight parameters of which satisfies the rank-1 canonical decomposition property. Then, we introduce learning algorithms to train both the linear and the non-linear classifier in a way...
متن کاملUsing Text Classifiers for Numerical Classification
Consider a supervised learning problem in which examples contain both numericaland text-valued features. To use traditional featurevector-based learning methods, one could treat the presence or absence of a word as a Boolean feature and use these binary-valued features together with the numerical features. However, the use of a text-classification system on this is a bit more problematic — in t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Approximate Reasoning
سال: 2017
ISSN: 0888-613X
DOI: 10.1016/j.ijar.2016.12.002